Visualization and analysis of very large 3D images

ANAS KHARBOUTLY
UM2(FDS) - Master 2 Informatics, IMAGINA

SUP. BY: GERARD SUBSOL

Montpellier 13. 3. 2013

Background

- * 2007-2012: Diploma in Informatics Engineering
 - Technical skills and competences
 - * Artificial Intelligence Techniques:
 - **Computer Vision**
 - Neural Networks, Robotics and Fuzzy Logic
 - OCR and language processing
 - Business Intelligence (OLAP Data Mining)
- * 2010-2012: Trainee at Automata4 company
 - System Analyst and Business Intelligence Researcher

Background

* Projects:

- Graph theory and shortest Path application
 Compiler project
- Image processing: fuzzy filter
- * Building a neural network for English alphabet recognition
- * "Fire detection in video frames using computer vision" Result: 96% (Excellent evaluation)
- * "Online Hand writing recognition for Arabic language" Result: 92% (Excellent evaluation)

Background

- * Certificates and awards:
 - 2007: Neuro Linguistic Programming (Certified NLP Diploma)
 - 2011: Certificate of Appreciation (Excellent Direction)
 - 2012: Certificate of Thanks and Appreciation (General organizer)
 - 2012: Certificate of Thanks and Appreciation (Image processing)
 - * 2012: Certificate of Diploma in the Informatics Engineering

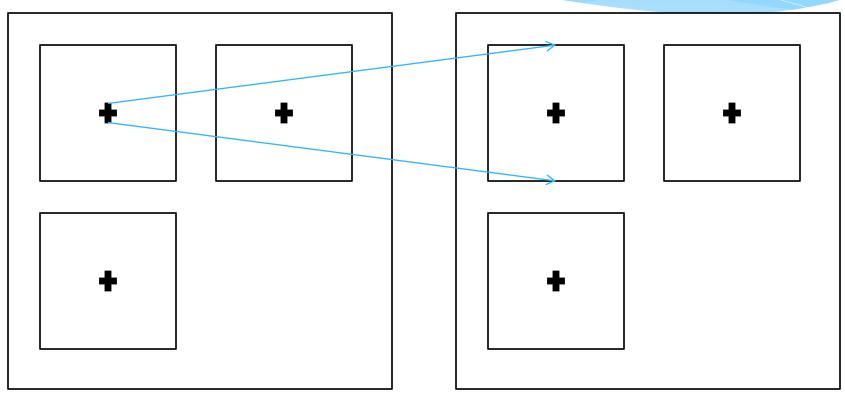
Current Occupation

- * Sept 2012 to present: Master 2 of IMAGINA
 - * First semester
 Image: compression and data hiding, Computer vision, Medical imaging, Serious game and Virtual reality.
 - Second semesterInternship at LIRMM

Visualization and analysis of very large 3D images

- * Visualization and analysis of very large 3D images
 - The problem
 - * Very large 3D images: 2000*2000*2000 voxel
 - * Standard computers
 - 2. Visualization
 - 1. Decomposition into blocks
 - 2. Low resolution window and high resolution zoom window
 - 3. Processing
 - 1. Applying some basic processing operators
 - 2. Matching the results

- * Visualization and analysis of very large 3D images
 - 1. The problem
 - * Very large 3D images: 2000*2000*2000 voxel
 - * Standard computers


2. Visualization

- 1. Decomposition into blocks
- 2. Low resolution window and high resolution zoom window

Processing

- 1. Applying some basic processing operators
- 2. Matching the results

- * Visualization and analysis of very large 3D images
 - 1. The problem
 - * Very large 3D images: 2000*2000*2000 voxel
 - * Standard computers
 - 2. Visualization
 - Decomposition into blocks
 - 2. Low resolution window and high resolution zoom window
 - 3. Processing
 - 1. Applying some basic processing operators
 - 2. Matching the results

Low Resolution window

High Resolution Zoom window

- * Visualization and analysis of very large 3D images
 - 1. The problem
 - * Very large 3D images: 2000*2000*2000 voxel
 - * Standard computers
 - 2. Visualization
 - 1. Decomposition into blocks
 - 2. Low resolution window and high resolution zoom window
 - 3. Processing
 - 1. Applying some basic processing operators
 - 2. Matching the results

Planning

- 1. 1st Month: Implementation of the visualization tool.
- 2. 2nd Month: Implementation of some processing operators.
- 3. 3rd Month: Study the results and prepare the final report.

Merci de votre attention

